Let $p > 10$ be prime. Prove that there are positive integers $m$ and $n$ with $m + n < p$ exist for which $p$ is a divisor of $5^m7^n-1$.
Source: 2021 Dutch IMO TST 3.4
Tags: number theory, divisor
Let $p > 10$ be prime. Prove that there are positive integers $m$ and $n$ with $m + n < p$ exist for which $p$ is a divisor of $5^m7^n-1$.