1) Let $a$ and $b$ be relatively prime positive integers. Prove that there is a positive integer $n$ such that $1 \le n \le b$ and $b$ divides $a^n - 1$. 2) Prove that there is a multiple of $7^{2010}$ of the form $99... 9$ ($n$ nines), for some positive integer $n$ not exceeding $7^{2010}$.