Prove that for $n\ge5$ the side of regular inscribable $n$-gon is bigger than the side of regular $n+1$-gon circumscribed around the same circle and if $n\le4$ the opposite statement is true.
Source: Bulgaria 1970 P5
Tags: inequalities, Geometric Inequalities, geometry, polygon
Prove that for $n\ge5$ the side of regular inscribable $n$-gon is bigger than the side of regular $n+1$-gon circumscribed around the same circle and if $n\le4$ the opposite statement is true.