Problem

Source: Bulgaria 1975 P6

Tags: combinatorics, combinatorial geometry, geometry



Some of the faces of a convex polyhedron $M$ are painted in blue, others are painted in white and there are no two walls with a common edge. Prove that if the sum of surfaces of the blue walls is bigger than half surface of $M$ then it may be inscribed a sphere in the polyhedron given $(M)$. (H. Lesov)