In the plane are given a circle $k$ with radii $R$ and the points $A_1,A_2,\ldots,A_n$, lying on $k$ or outside $k$. Prove that there exist infinitely many points $X$ from the given circumference for which $$\sum_{i=1}^n A_iX^2\ge2nR^2.$$Does there exist a pair of points on different sides of some diameter, $X$ and $Y$ from $k$, such that $$\sum_{i=1}^n A_iX^2\ge2nR^2\text{ and }\sum_{i=1}^n A_iY^2\ge2nR^2?$$ H. Lesov
Problem
Source: Bulgaria 1975 P4
Tags: inequalities, circles, geometry, geometrical inequalities, Geometric Inequalities