Problem

Source: Bulgaria 1975 P2

Tags: combinatorics, geometry, polygon



Let $F$ be a polygon the boundary of which is a broken line with vertices in the knots (units) of a given in advance regular square network. If $k$ is the count of knots of the network situated over the boundary of $F$, and $\ell$ is the count of the knots of the network lying inside $F$, prove that if the surface of every square from the network is $1$, then the surface $S$ of $F$ is calculated with the formulae: $$S=\frac k2+\ell-1$$ V. Chukanov