Let $0<x_1\le x_2\le\ldots\le x_n$. Prove that $$\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\ge\frac{x_2}{x_1}+\frac{x_3}{x_2}+\ldots+\frac{x_n}{x_{n-1}}+\frac{x_1}{x_n}$$ I. Tonov
Source: Bulgaria 1976 P4
Tags: inequalities
Let $0<x_1\le x_2\le\ldots\le x_n$. Prove that $$\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\ge\frac{x_2}{x_1}+\frac{x_3}{x_2}+\ldots+\frac{x_n}{x_{n-1}}+\frac{x_1}{x_n}$$ I. Tonov