The set $M=\{1,2,\ldots,2n\}~(n\ge2)$ is partitioned into $k$ nonintersecting subsets $M_1,M_2,\ldots,M_k$, where $k^3+1\le n$. Prove that there exist $k+1$ even numbers $2j_1,2j_2,\ldots,2j_{k+1}$ in $M$ that are in one and the same subset $M_j$ $(1\le j\le k)$ such that the numbers $2j_1-1,2j_2-1,\ldots,2j_{k+1}-1$ are also in one and the same subset $M_r$ $(1\le r\le k)$.