Problem

Source: Bulgaria 1979 P2

Tags: geometry, 3D geometry, tetrahedron



Points $P,Q,R,S$ are taken on respective edges $AC$, $AB$, $BD$, and $CD$ of a tetrahedron $ABCD$ so that $PR$ and $QS$ intersect at point $N$ and $PS$ and $QR$ intersect at point $M$. The line $MN$ meets the plane $ABC$ at point $L$. Prove that the lines $AL$, $BP$, and $CQ$ are concurrent.