Problem

Source: Bulgaria 1984 P2

Tags: geometry, trapezoid



The diagonals of a trapezoid $ABCD$ with bases $AB$ and $CD$ intersect in a point $O$, and $AB/CD=k>1$. The bisectors of the angles $AOB,BOC,COD,DOA$ intersect $AB,BC,CD,DA$ respectively at $K,L,M,N$. The lines $KL$ and $MN$ meet at $P$, and the lines $KN$ and $LM$ meet at $Q$. If the areas of $ABCD$ and $OPQ$ are equal, find the value of $k$.