Problem

Source: Bulgaria 1986 P2

Tags: quadratics, Polynomials, algebra, polynomial



Let $f(x)$ be a quadratic polynomial with two real roots in the interval $[-1,1]$. Prove that if the maximum value of $|f(x)|$ in the interval $[-1,1]$ is equal to $1$, then the maximum value of $|f'(x)|$ in the interval $[-1,1]$ is not less than $1$.