The sequence $(x_n)_{n\in\mathbb N}$ is defined by $x_1=x_2=1$, $x_{n+2}=14x_{n+1}-x_n-4$ for each $n\in\mathbb N$. Prove that all terms of this sequence are perfect squares.
Source: Bulgaria 1987 P4
Tags: Sequences, algebra, recurrence relation
The sequence $(x_n)_{n\in\mathbb N}$ is defined by $x_1=x_2=1$, $x_{n+2}=14x_{n+1}-x_n-4$ for each $n\in\mathbb N$. Prove that all terms of this sequence are perfect squares.