Problem

Source: Bulgaria 1988 P4

Tags: geometry



Let $A,B,C$ be non-collinear points. For each point $D$ of the ray $AC$, we denote by $E$ and $F$ the points of tangency of the incircle of $\triangle ABD$ with $AB$ and $AD$, respectively. Prove that, as point $D$ moves along the ray $AC$, the line $EF$ passes through a fixed point.