Xenia and Yagve take turns in playing the following game: A coin is placed on the first box in a row of nine cells. At each turn the player may choose to move the coin forward one step, move the coin forward four steps, or move coin back two steps. For a move to be allowed, the coin must land on one of them of nine cells. The winner is one who gets to move the coin to the last ninth cell. Who wins, given that Xenia makes the first move, and both players play optimally?
Problem
Source: 2017 Swedish Mathematical Competition p1
Tags: combinatorics, game, game strategy, winning strategy