Let $a,b,c,x,y,z$ be real numbers such that $x+y+z=0$, $a+b+c\geq 0$, $ab+bc+ca \ge 0$. Prove that $$ ax^2+by^2+cz^2\ge 0 $$
Source: 2017 Swedish Mathematical Competition p6
Tags: algebra, inequalities
Let $a,b,c,x,y,z$ be real numbers such that $x+y+z=0$, $a+b+c\geq 0$, $ab+bc+ca \ge 0$. Prove that $$ ax^2+by^2+cz^2\ge 0 $$