Problem

Source: 2002 Singapore TST 1.2

Tags: Sequence, combinatorics, odd, Even



Let $n$ be a positive integer and $(x_1, x_2, ..., x_{2n})$, $x_i = 0$ or $1, i = 1, 2, ... , 2n$ be a sequence of $2n$ integers. Let $S_n$ be the sum $S_n = x_1x_2 + x_3x_4 + ... + x_{2n-1}x_{2n}$. If $O_n$ is the number of sequences such that $S_n$ is odd and $E_n$ is the number of sequences such that $S_n$ is even, prove that $$\frac{O_n}{E_n}=\frac{2^n - 1}{2^n + 1}$$