Problem

Source: 2019 Grand Duchy of Lithuania, Mathematical Contest p1 (Baltic Way TST)

Tags: algebra, inequalities



Let $x, y, z$ be positive numbers such that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Prove that $$\sqrt{x + yz} +\sqrt{y + zx} +\sqrt{z + xy} \ge\sqrt{xyz}+\sqrt{x }+\sqrt{y} +\sqrt{z}$$