Problem

Source: 2016 Grand Duchy of Lithuania, Mathematical Contest p1 (Baltic Way TST)

Tags: inequalities, algebra



Let $a, b$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove that $$\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2} \le \frac{1}{4} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$