Source: 2014 Saudi Arabia Pre-TST 3.2
Tags: algebra, min, inequalities
Let $x, y$ be positive real numbers. Find the minimum of
$$x^2 + xy +\frac{y^2}{2}+\frac{2^6}{x + y}+\frac{3^4}{x^3}$$
parmenides51 wrote:
Let $x, y$ be positive real numbers. Find the minimum of
$$x^2 + xy +\frac{y^2}{2}+\frac{2^6}{x + y}+\frac{3^4}{x^3}$$
Attachments:
Let $x, y$ be positive real numbers. Prove that
$$ x^2 + xy +\frac{y^2}{2}+\frac{64}{x + y}+\frac{27}{x^2}\geq 3(8+\sqrt 6)$$
sqing wrote:
Let $x, y$ be positive real numbers. Prove that
$$ x^2 + xy +\frac{y^2}{2}+\frac{64}{x + y}+\frac{27}{x^2}\geq 3(8+\sqrt 6)$$
Attachments: