Let $n$ be a given positive integer. Prove that there are infinitely many pairs of positive integers $(a, b)$ with $a, b > n$ such that $$\prod_{i=1}^{2015} (a + i) | b(b + 2016), \prod_{i=1}^{2015}(a + i) \nmid b, \prod_{i=1}^{2015} (a + i)\mid (b + 2016)$$.
Problem
Source: 2016 Saudi Arabia Pre-TST Level 4+ 2.4
Tags: number theory, Product, divides, divisible