Problem

Source: 2016 Saudi Arabia Pre-TST Level 4+ 1.2

Tags: algebra, inequalities



Let $a, b, c$ be positive numbers such that $a^2+b^2+c^2+abc = 4$. Prove that $$\frac{a + b}{c} +\frac{b + c}{a} +\frac{c + a}{b} \ge a + b + c + \frac{1}{a} + \frac{1}{b} +\frac{1}{c}$$