Problem

Source: 2016 Saudi Arabia Pre-TST Level 4 1.4

Tags: number theory, coprime, divides, divisible



Let $p$ be a given prime. For each prime $r$, we defind the function as following $F(r) =\frac{(p^{rp} - 1) (p - 1)}{(p^r - 1) (p^p - 1)}$. 1. Show that $F(r)$ is a positive integer for any prime $r \ne p$. 2. Show that $F(r)$ and $F(s)$ are coprime for any primes $r$ and $s$ such that $r \ne p, s \ne p$ and $r \ne s$. 3. Fix a prime $r \ne p$. Show that there is a prime divisor $q$ of $F(r)$ such that $p| q - 1$ but $p^2 \nmid q - 1$.