Let $x, y, z$ be positive real numbers satisfy the condition $x^2 +y^2 + z^2 = 2(x y + yz + z x)$. Prove that $x + y + z + \frac{1}{2x yz} \ge 4$
Source: 2016 Saudi Arabia Pre-TST Level 4 1.1
Tags: algebra, inequalities
Let $x, y, z$ be positive real numbers satisfy the condition $x^2 +y^2 + z^2 = 2(x y + yz + z x)$. Prove that $x + y + z + \frac{1}{2x yz} \ge 4$