Let $x, y$ be two integers. Prove that if $2013$ divides $x^{1433} + y^{1433}$ then $2013$ divides $x^7 + y^7$.
Source: 2013 Saudi Arabia Pre-TST 4.2
Tags: number theory, divides, divisible
Let $x, y$ be two integers. Prove that if $2013$ divides $x^{1433} + y^{1433}$ then $2013$ divides $x^7 + y^7$.