Let $f : R \to R$ be a function satisfying $f(f(x)) = 4x + 1$ for all real number $x$. Prove that the equation $f(x) = x$ has a unique solution.
Source: 2013 Saudi Arabia Pre-TST 3.1
Tags: algebra, functional, functional equation
Let $f : R \to R$ be a function satisfying $f(f(x)) = 4x + 1$ for all real number $x$. Prove that the equation $f(x) = x$ has a unique solution.