Problem

Source: 2016 Saudi Arabia GMO TST level 4+, III p3

Tags: divides, divisor, algebra, polynomial



Find all polynomials $P,Q \in Z[x]$ such that every positive integer is a divisor of a certain nonzero term of the sequence $(x_n)_{n=0}^{\infty}$ given by the conditions: $x_0 = 2016$, $x_{2n+1} = P(x_{2n})$, $x_{2n+2} = Q(x_{2n+1})$ for all $n \ge 0$