Problem

Source: 2016 Saudi Arabia GMO TST level 4+, II p3

Tags: combinatorics



In a school, there are totally $n$ students, with $n \ge 2$. The students take part in $m$ clubs and in each club, there are at least $2$ members (a student may take part in more than $1$ club). Eventually, the Principal notices that: If $2$ clubs share at least $2$ common members then they have different numbers of members. Prove that $$m \le (n - 1)^2$$