Problem

Source: 2016 Saudi Arabia GMO TST level 4, II p1

Tags: Sum, algebra, inequalities



Let $S = x + y +z$ where $x, y, z$ are three nonzero real numbers satisfying the following system of inequalities: $$xyz > 1$$$$x + y + z >\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$$Prove that $S$ can take on any real values when $x, y, z$ vary