Problem

Source: 2016 Saudi Arabia GMO TST level 4, I p1

Tags: algebra, quadratic polynomial, quadratics



Let $f (x) = x^2 + ax + b$ be a quadratic function with real coefficients $a, b$. It is given that the equation $f (f (x)) = 0$ has $4$ distinct real roots and the sum of $2$ roots among these roots is equal to $-1$. Prove that $b \le -\frac14$