Let $S = \{f(a, b) | a, b = 1,2,3, 4$ and $a \ne b\}$, and consider all nonzero polynomials $p(X,Y )$ with integer coefficients such that $p(a, b) = 0$ for every element $(a,b)$ in $S$. (a) What is the minimal degree of such polynomial $p(X, Y )$ ? (b) Determine all such polynomials $p(X, Y )$ with minimal degree.