Problem

Source: 2013 Saudi Arabia BMO TST II p6

Tags: algebra, inequalities



Let $a, b,c$ be positive real numbers such that $ab + bc + ca = 1$. Prove that $$a\sqrt{b^2 + c^2 + bc} + b\sqrt{c^2 + a^2 + ca} + c\sqrt{a^2 + b^2 + ab} \ge \sqrt3$$