Problem

Source: 2006 Romania JBMO TST 5.2

Tags: number theory



Consider the integers $a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4$ with $a_k \ne b_k$ for all $k = 1, 2, 3, 4$. If $\{a_1, b_1\} + \{a_2, b_2\} = \{a_3, b_3\} + \{a_4, b_4\}$, show that the number $|(a_1 - b_1)(a_2 - b_2)(a_3 - b_3)(a_4 - b_4)|$ is a square. Note. For any sets $A$ and $B$, we denote $A + B = \{x + y | x \in A, y \in B\}$.