Let $a, b, c$ be positive real numbers with $abc = 1$. Prove that $1 + \frac{3}{a+b+c}\ge \frac{6}{ab+bc+ca}$
Source: 2003 Romania JBMO TST 2.1
Tags: algebra, inequalities
Let $a, b, c$ be positive real numbers with $abc = 1$. Prove that $1 + \frac{3}{a+b+c}\ge \frac{6}{ab+bc+ca}$