$p^2 + 5pq + 4q^2 = x^2$
$p^2 + 4pq + 4q^2 + pq = x^2$
$(p + 2q)^2 + pq = x^2$
$pq = x^2 - (p + 2q)^2 = (x + p + 2q)(x - p - 2q)$
Since $x + p + 2q > x - p - 2q$, and $p, q$ are prime:
Case 1: $x + p + 2q = p, x - p - 2q = q$
$\implies x + 2q = 0$ which is impossible since $x, q > 0$
Case 2: $x + p + 2q = q, x - p - 2q = p$
$\implies x + p + q = 0$ which is impossible since $x, p, q > 0$
Case 3: $x + p + 2q = pq, x - p - 2q = 1$
$\implies 2x = pq + 1$
$\implies x = (pq + 1)/2$
$\implies (pq + 1)/2 - p - 2q = 1$
$\implies pq + 1 - 2p - 4q = 2$
$\implies pq - 2p - 4q - 1 = 0$
$\implies p(q - 2) - 4q + 8 = 9$
$\implies p(q - 2) - 4(q - 2) = 9$
$\implies(p - 4)(q - 2) = 9$
Case 1: $p - 4 = 1, q - 2 = 9$
$\implies p = 5, q = 11$
Case 2: $p - 4 = 3, q - 2 = 3$
$\implies p = 7, q = 5$
Case 3: $p - 4 = 9, q - 2 = 1$
$\implies p = 13, q = 3$
$\implies \boxed{(p, q) = (5, 11), (7, 5), (13, 3)}$