Let $a, b, c$ be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that $$\frac{1}{1+2ab}+\frac{1}{1+2bc}+\frac{1}{1+2ca}\ge 1$$
Source: 2004 Estonia National Olympiad Final Round grade 12 p4
Tags: inequalities, algebra
Let $a, b, c$ be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that $$\frac{1}{1+2ab}+\frac{1}{1+2bc}+\frac{1}{1+2ca}\ge 1$$