Let $a, b$, and $c$ be positive real numbers not greater than $2$. Prove the inequality $\frac{abc}{a + b + c} \le \frac43$
Source: 2003 Estonia National Olympiad Final Round grade 10 p4
Tags: inequalities, algebra
Let $a, b$, and $c$ be positive real numbers not greater than $2$. Prove the inequality $\frac{abc}{a + b + c} \le \frac43$