Problem

Source: 2001 Estonia National Olympiad Final Round grade 10 p4

Tags: number theory, harmonic, Divisors



We call a triple of positive integers $(a, b, c)$ harmonic if $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$. Prove that, for any given positive integer $c$, the number of harmonic triples $(a, b, c)$ is equal to the number of positive divisors of $c^2$.