John had to solve a math problem in the class. While cleaning the blackboard, he accidentally erased a part of his problem as well: the text that remained on board was $37 \cdot(72 + 3x) = 14**45$, where $*$ marks an erased digit. Show that John can still solve his problem, knowing that $x$ is an integer
Problem
Source: 2001 Estonia National Olympiad Final Round grade 9 p1
Tags: number theory, Digits, Integer