Problem

Source: 2001 Estonia National Olympiad Final Round grade 11 p2

Tags: least common multiple, divides, divisor, number theory



A student wrote a correct addition operation $A/B+C/D = E/F$ on the blackboard, where both summands are irreducible and $F$ is the least common multiple of $B$ and $D$. After that, the student reduced the sum $E/F$ correctly by an integer $d$. Prove that $d$ is a common divisor of $B$ and $D$.