Let $C$ and $D$ be two distinct points on a semicircle of diameter $AB$. Let $E$ be the intersection of $AC$ and $BD$, $F$ be the intersection of $AD$ and $BC$ and $X, Y$, and $Z$ are the midpoints of $AB, CD$, and $EF$, respectively. Prove that the points $X, Y,$ and $Z$ are collinear.
Problem
Source: 1998 Estonia National Olympiad Final Round grade 10 p2
Tags: collinear, geometry, semicircle