In a triangle $ABC$, the bisector of the largest angle $\angle A$ meets $BC$ at point $D$. Let $E$ and $F$ be the feet of perpendiculars from $D$ to $AC$ and $AB$, respectively. Let $R$ denote the ratio between the areas of triangles $DEB$ and $DFC$. (a) Prove that, for every real number $r > 0$, one can construct a triangle ABC for which $R$ is equal to $r$. (b) Prove that if $R$ is irrational, then at least one side length of $\vartriangle ABC$ is irrational. (c) Give an example of a triangle $ABC$ with exactly two sides of irrational length, but with rational $R$.
Problem
Source: 1998 Estonia National Olympiad Final Round grade 12 p3
Tags: ratio, perpendicular, triangle area, areas, geometry, irrational