Problem

Source: 1998 Estonia National Olympiad Final Round grade 11 p2

Tags: geometry, incenter, concurrent, midpoints



In a triangle $ABC, A_1,B_1,C_1$ are the midpoints of segments $BC,CA,AB, A_2,B_2,C_2$ are the midpoints of segments $B_1C_1,C_1A_1,A_1B_1$, and $A_3,B_3,C_3$ are the incenters of triangles $B_1AC_1,C_1BA_1,A_1CB_1$, respectively. Show that the lines $A_2A_3,B_2B_3$ and $C_2C_3$ are concurrent.