Problem

Source: Norwegian Mathematical Olympiad 2001 - Abel Competition p4

Tags: combinatorics



At a two-day team competition in chess, three schools with $15$ pupils each attend. Each student plays one game against each player on the other two teams, ie a total of $30$ chess games per student. a) Is it possible for each student to play exactly $15$ games after the first day? b) Show that it is possible for each student to play exactly $16$ games after the first day. c) Assume that each student has played exactly $16$ games after the first day. Show that there are three students, one from each school, who have played their three parties