Problem

Source: Norwegian Mathematical Olympiad 2001 - Abel Competition p3b

Tags: Geometric Inequalities, inequalities, area, triangle area, geometry



The diagonals $AC$ and $BD$ in the convex quadrilateral $ABCD$ intersect in $S$. Let $F_1$ and $F_2$ be the areas of $\vartriangle ABS$ and $\vartriangle CSD$. and let $F$ be the area of the quadrilateral $ABCD$. Show that $\sqrt{ F_1 }+\sqrt{ F_2}\le \sqrt{ F}$