Problem

Source: Norwegian Mathematical Olympiad 2001 - Abel Competition p2

Tags: Subsets, Sets, combinatorics



Let $A$ be a set, and let $P (A)$ be the powerset of all non-empty subsets of $A$. (For example, $A = \{1,2,3\}$, then $P (A) = \{\{1\},\{2\} ,\{3\},\{1,2\}, \{1,3\},\{2,3\}, \{1,2,3\}\}$.) A subset $F$ of P $(A)$ is called strong if the following is true: If $B_1$ and $B_2$ are elements of $F$, then $B_1 \cup B_2$ is also an element of $F$. Suppose that $F$ and $G$ are strong subsets of $P (A)$. a) Is the union $F \cup G$ necessarily strong? b) Is the intersection $F \cap G$ necessarily strong?