Problem

Source: Norwegian Mathematical Olympiad 2000 - Abel Competition p2b

Tags: inequalities, algebra, Sum



Let $a,b,c$ and $d$ be non-negative real numbers such that $a+b+c+d = 4$. Show that $\sqrt{a+b+c}+\sqrt{b+c+d}+\sqrt{c+d+a}+\sqrt{d+a+b}\ge 6$.