There are $n$ pieces on the squares of a $5 \times 9$ board, at most one on each square at any time during the game. A move in the game consists of simultaneously moving each piece to a neighboring square by side, under the restriction that a piece having been moved horizontally in the previous move must be moved vertically and vice versa. Find the greatest value of $n$ for which there exists an initial position starting at which the game can be continued until the end of the world.
Problem
Source: Switzerland - Swiss TST 2003 p5
Tags: game, combinatorial geometry, combinatorics, board