For any $16$ positive integers $n,a_1,a_2,...,a_{15}$ we define $T(n,a_1,a_2,...,a_{15}) = (a_1^n+a_2^n+ ...+a_{15}^n)a_1a_2...a_{15}$. Find the smallest $n$ such that $T(n,a_1,a_2,...,a_{15})$ is divisible by $15$ for any choice of $a_1,a_2,...,a_{15}$.
Problem
Source: Israel Grosman Memorial Mathematical Olympiad 1999 p1
Tags: divisible, number theory