Let $p$ be a prime number and $a$ be an integer. Prove that if $2^p +3^p = a^n$ for some integer $n$, then $n = 1$.
Source: Slovenia TST 1997 p6
Tags: number theory, prime
Let $p$ be a prime number and $a$ be an integer. Prove that if $2^p +3^p = a^n$ for some integer $n$, then $n = 1$.