A square with the dimension $ 1 \times1 $ has been removed from a square board $ 3 ^n \times 3 ^n $ ($ n \in \mathbb {N}, $ $ n> 1 $). a) Prove that any defective board with the dimension $ 3 ^ n \times3 ^ n $ can be covered with shaped figures of shape 1 (the 3 squares' one) and of shape 2 (the 5 squares' one). Figures covering the board must not overlap each other and must not cross the edge of the board. Also the squares removed from the board must not be covered. (b) How many small figures in shape 2 must be used to cover the board?
Problem
Source: North Macedonian Mathematical Olympiad 1994 p5
Tags: Tiling, combinatorics, combinatorial geometry